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\\ ABSTRACT

'iThis is a review paper which outlines the main points of the theory of
nonlinear semigroups and evolution governed by accretive operators. The
subject is now rather mature, so most of the principal ideas and results are
not new. However, the presentation here is organized differently from that in
other sources and does touch upon recent results. An attempt has been made to
make this paper a pleasant route to a certain view of the subject. This
manuscript represents the author's contribution to the proceedings of the
Symposium on Nonlinear Functional Analysis and Applications held in Berkeley

in July, 1983.
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NONLINEAR SEMIGROUPS AND EVOLUTION GOVERNED BY ACCRETIVE OPsﬁATORS

Michael G. Crandall

In this review article we will outline some of the main points of the theory of
nonlinear semigroups and evolution governed by accretive operators. As the subject has
achieved a certain maturity, most of the principal ideas and results are not new.

f: However, the current presentation is somewhat different from others in its style and
choice of topics, and we have tried to make it pleasant reading for newcomers to the
subject. It does touch upon some recent results, and we hope it will be of interest.

The material is organized into 8 sections. Section 1 contains preliminaries and

introduces the subject via a "generation" theory point of view. Here one finds

elementary notions about semigroups, their generators, strong solutions and accretive
operators. Section 2 introduces the notion of a "mild solution” of an abstract
initial-value problem, a notion which allows a certain unity and ease of expression in
the follqwing discussion which would otherwise be severely hampered by a lack of
regular solutions. Mild solutions are, roughly, uniform limits of solutions of
suitable difference approximations of the problem under consideration. Section 3
presents the basic convergence results which state that if suitable difference
approximations can be solved, then their solutions will converge. These results lie at
the heart of the theory and provide an ample supply of mild solutions.

Section 4 is off the usual track and presents something a bit more novel. Here,
in a model case, a relationship between Kato's theory of quasilinear evolution and the
results of Section 3 is exhibited.

Section 5 is also organized in an unusual way. Here we return to the generation
question and explain some of the highlights as well as a couple of open problems.

These considerations are used to introduce more subtle conditions under which it can be

Sponsored by the United States Army under Contract No. DAAG29-80~C-0041.

r L
-.§-.‘j_\,\-,\ ™ -_‘.3, s‘:\,rs \.."&. "

SRR

PO .-‘:,1.




e e e e T T e e T A o N N T s N A M ® e, e, e aty e et s Ot Rt LRk A P et alr A

proved that there are solvable difference approximations and recent remarks by
Kobayashi on the question of necessary conditions. This section is not referred to in
;4 what follows it.

In Section 6, at last, we concede to the conventional and discuss the regularity
of our mild solutions. Here the standard conditions gquaranteeing the differentiabilty
of mild solutions and the pointwise satisfaction of the equations are given. This is
;:: also a natural place to describe the inequalities which Benilan proved uniquely
e identify a mild solution when it exists.

- Section 7 briefly describes the most ugseful auxiliary results of the theory.
- These results concern the continuous dependence of solutions on the equation,
representation of solutions and compactness criteria of various sorts.

Few of the results stated here are proved, although some description of the line
of argument is given from time to time. Similarly, we have omitted all references in
the text proper, as comments as to who did what interrupt the flow and do not serve a
R browsing reader well. We partially correct this in Section 8 where further comments

L are made on the material of the previous sections and (incomplete) references are

- given. Here we also attempt to refer to some of the current activity in this area of ) —
'i: which we are aware, but the field has become too vast to attempt any sort of £§:§:::
X W
t%: completeness in describing either the old or the new in an article of moderate Aég:%::
i: length. For example, we have not attempted to discuss questions of asymptotic “f,L;?c:i

- behaviour, an area which has enjoyed a great deal of relatively recent activity, in the

:: text (but we do give some references in Section 8). An even more profound omisgion

i? concerns applications, which we at first thought to approach somehow. However, this

s idea was abandoned owing to our inability to come up with a satifactory scheme that was

2‘ not inferior to suggesting the reader refer to Crandall {26), Evans [43] and Barbu (3] o

1% )

.:: (in that order). This will not yield an up-to-date view of the situation, but it will ::%ii:
. .t n Y
‘%' provide some simple examples and then an accurate impression of the nature and range of ) 4§i3i‘
)y applications. More recent references are given in Section 8. '
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It should be mentioned that this review is affected by work the author has done
. with Benilan and Pasy on the small bock [13], which is in a state of perpetual
preparation. The author is also indebted to 8. Charu, A. Pazy and 8. Reich for their

< comments on this paper.

Section 1. Preliminaries

The origins of this subject lie in questions posed by its pioneers about the
"generation" of semigroups of transformations. We adopt this point of view as a
pedagogical device, although a more "applied” attitude holds sway at the moment. Thus
we begin by defining the class of semigroups under consideration and observing
properties which their "generators® might be expected to have. This leads us naturally
to the class of accretive operators.

Let X be a real Banach space with the norm ! 1. The norm of the dual space x* of

X will also be denoted by § I. If C is & subset of X, a semigroup on C will mean a

collection {S(t): 0 < t| of self-maps of C with the properties (i) below:
(1) 8(0)x = x and S(t)8(T)x = 8(t + T)x when 0 < t, T and x @ C.
. Note that the value of S(t) at x @€ C is written S(t)x even if 8(t) is not a linear
function. A semigroup 8 on C is a continuous semigroup if
(11) The mapping [0,%)xC 5 (t,x) + 8(t)x € C is continuous when C
carries the norm topology of X.
We are mainly interested in the situation in which the continuity of S(t)x in the

“state variable" x is special. A continuous semigroup 8 on C which satisfies

(111) 18(t)x - 8(t)yl < Ix -yl for 0 < t and x, y € C,
is said to be nonexpansive or a semigroup of contractions. More generally, if there is

a number w such that

(1v) 18(t)x - B(t)yl < e®®Ix -yl for 0 <t ana x, y @ C,
then we say that 8 is a quasicontractive (of type w) semigroup on C. Of course, if
either (i1i) or (iv) hold, then 8 is continucus as soon as t * S{t)x is continuous for

each x @ C.
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The notion of a semigroup is an abstraction of the notion of a uniquely solvable

initial-value problem of the form

g% + Au = 0,
(IVP) »
u(0) = x,

where A is a (nonlinear) operator A:D(A) C X + X. If for each x € C (IVP) has a unique

solution (in some sense!) u(t) on (0,®), then putting S(t)x = u(t) should define a

semigroup on C. Further properties of the semigroup should correspond to further

properties of the operator A and the notion of solution involved, and ways of relating

semigroups and initial-value problems (or related objects) we will refer to here as

.. “generation theory”.

The most obvious way to attempt to associate an initial-value problem (IVP) with a

semigroup S on C is to compute the operator

Ax = 1ip X S(E)x

t+0
whose domain D(Ag) is the set of x @ C such that the limit exists, and then hope

"solving” (IVP) with A = Ag will return S. The operator -Ag is called the

infinitesimal generator of S. Let us see how the quasicontractive property (iv) of a '

> semigroup S would be reflected in its infinitesimal generator. If S satisfies (iv),

: then for 0 < A, t

)
Ix=x+2A

((x = S(t)x) _(x - S(t)x)
t t

o> (1+£)lx - x - £ls(t)x - S(t)x)

> (14A(1 = ) /t)ix = x)

80 if x, x are in D(Ag) we may pass to the limit to find that

Ix - x + X(Asx - Asx)l > (1 - Aw)lIx - xf for x, x € D(AS).

We will refer to this property by saying that Ag + ul is accretive. More precisely, if

A is an operator then A + wl is accretive if

(1.1) Ix -~ x + A(Ax - Ax)! > (1 - Aw)lIx - x! for x, x @ D(A) and X > 0.

In the special case that A + 0I is accretive we simply say that A is accretive. (There

ig a little subtlety here, and we leave it to the reader to check that A + wl is

-4~
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accretive if and only if A + wI is accretive.) It follows from the above remarks that
if 8 is a semigroup of contractions, then Ag is accretive.

It l-x-;mdv-u-ﬁmdu-o, then (1.1) can be written as
0« l""lx for A > 0 where
(1.2) (z,w], = -'-'—+-"'T'-'—M
defines [z,w], for A ¥ 0. Since A+ Iz + )l is a convex function of A we may define
(1.3) (z,w] = lim [z,v], = inf [z,v]

A+0 A0

and then observe that an operator A:D(A) C X + X is accretive if and only if
(1.4) 0 € [x = x, Ax = Ax] for x, x @ D(A).
Let us list some properties of the bracket [ , ] before continuing. One further
concept, namely that of the "duality map” J:X + x* is required. It is given by
(1.5) Jix) = | x* @ X*: x"(x) = Ixl and Ix'V < 1 }
where x"(x) denotes the value of x' @ x" at x @ X. For example, J(0) is the closed
unit ball in x'.

Proposition 1. Let x,y,z € X and a,8 @ R. We have:

(1) [ + }J:XxX + R is upper-semicontinuous.
(11) {ax,By] = |8](x,y] if a8 > O.

(111) [x,0¢ + y] = alx) + [x,y).

(iv) | tx,y1] < Iyl and (0,y] = Iyl.

(v) -[x,~y) € [(x,¥].

(vi) (x,y + 2] € [x,¥] + [x,2].

(vil) tx,y) = [x,2]| < 1y - =1,

(1x) (x,y) = max{x"(y): x* @ 300 }.

Let us consider still another way to say that A + ul is accretive. If we put
2=x+ Mxand z=x + Mx in (1.1). Then, formally, x = (I + M)~ 'z ana

x = (I + )~z and (1.1) may be reformulated as

1

(1.6) I Y2 = (24 V20 € (1-2w) " Viz-2t for z, = @ R(I+AA),
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from which we see that (I + M)~! is indeed a function with (1 - Aw)~! as a Lipschitz

constant if M < 1. Just as £~! need not be a function if ¢ is, A need not be a
function in order that (1.6) hold, and we will continue the discussion in the
multivalued generality that this suggests.

More precisely, we will call a mapping A:X + 2¥ (the subsets of X) an “"operator"®
in X. Functions with domain and range in X are identified with the corresponding
single-valued operators, where a single-valusd operator A is one whose values Ax are
either singletons or the empty set. The effective domain D(A) of an operator A is

D(A) = {x @ X: Ax is not empty|.
If A is a single~valued operator (or the corresponding function) and x @ D(A), we will
use Ax, depending on the context, to denote either the singleton set or its
corresponding element. If A and B are operators and A € R then we form new operators
A"!, A, and A + B in the expected ways. For example,

A Mx = {yex: yeAx}.

We formulate the notion of accretiveness for coperators. The equivalence of the

= four conditions given is clear from the above.

Definition 1. If A is an operator in X and @ @ R, then A + wI ia accretive (or, for
short, A @ A{w)) if the following equivalent conditions hold:
(1) (1 - dw)ix - ;l < Ix - ; + Aly - ;)l for y € Ax, ; e A; and A > 0.
(i) [x - ;,y - ;1 > ~whx - ;I for y € Ax and § e Ax.
(111) If y @ Ax and y € Ax, then there is an x" @ J(x—&) such that
x(y = ¥) > = wlx - x1.
(4v) If A > 0 and Aw < 1, then (I + )~ is single~valued and has

(1 = 2)~" as a Lipschitz constant.

In practice, it is usually (ii) which is used to verify accretiveness. We
complete this section by recalling the notion of a strong solution of the inclusion
(DE), u'(t) + Au(e) 3 £(¢)

in which A is an operator in X and f:[0,T] + X is Bochner integrable with respect to
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Lebesque measure (that is £ @ 11(0,7:%)). The space w‘v‘(o,'rux) consists of those
functions u which have the form
t

(t.7) u(t) = u(0) + | h(a)ds
0

[

AR IRA,

for some h @ L'(O,’r:!). It is well-known that w"‘(o,rzx) consists of exactly those

-,
.

absolutely continucus functions u:(0,T] + X which are differentiable a.e. on [0,T] and
that when (1.7) holds with h @ L1(0,T:X), then u'(t) = h(t) a.e.. Morecver, if X is
reflexive then evary absolutely continuous u:{0,T] + X belongs to \'"1(0,'1':!), while
there are spaces X and absclutely continuous functions u which are nowhere
differentiable.

Definition 2. A strong solution of (DE)g on {0,T] is au e w121¢0,2:X) such that

£(t) - u'(t) & Au(t) almost everywhere on {0,T]).

As a sample exercise in the concepts we have introduced so far, let us prove that
if A + ul is accretive, then strong solutions of (DR), are determined by their initial-
values. More precisely:

Proposition 2. Let £, £ @ L1(0,T:X), A @ A(w) and u, u be strong solutions of

w'+Aadg, 0 +audE, respectively, on (0,T]. Then

t - .
o (t7%) tu(a)-ue) £(s)-f(s)] a8 <

tae)-u(t) < «*Eru(0)-u(0) i+ |
0
(1.8)

w(t-8s)

Iu(O)-h(O)l + } ° It(.)-;(l) Ids.

Proof. Let £:(0,T] + X be differentiadble from the right at s @ (0,T). Then for h > 0

M(s + h) = agqayy _ V() * BER(8)E - BCaN
h h

+ o(1)

= (£(s),£o(8)]) +o(1)
where f£3(s) denotes the right derivative of £ at s. Upon letting hi0 we find
that I£(t)} has a right derivative at t = s and

(1.9) Dalf(t)ll = [£(s).23(m)] ,

t=s
vhere Pr denotes the right derivative. Similarly,

-
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(1.10) p e = - (£(8), -£}(8)] ,

and we conclude that if both f and If(t)l are differentiable at t = s, then

a
at
If u and u are absolutely continuous, then so is g(t) = fu(t) - u(t)l, which is

(1.11) 1| = (£(s), 21 (8)] = ~[£(8),~£' (s)].

Sobc e .t

therefore differentiable a.e.. If u and G are as in the proposition then u, u and g

are all differentiable at almost every t and, by the above, for such values of t we

B

have

otute) - uiedt = -tuce) - ace), at(e) = u'(t)] =

E o —{ut) = alE), (£(E) = u'(E)) = (£(t) = u'(t)) + (£(t) - £(£))].

Since u and & are strong solutions of their respective equations, we have

PR

f(t) - u'(t) € Au(t) and f(t) -u'(t) e Aﬁ(t) a.e.. At such points t, by

E Proposition 1 (vi) and Definition 1(ii),

[u(t) = u(e),(£(t) = u'(t)) = (£(t) - u'(t)) + (£f(¢) - £(¢))] >

> [u(t) = ult),(£(t) - u'(t)) - (£(t) - u'(t))] - [ul(t) - u(t),f(t) ~ £(t)]
i ? ~wlu(t) =~ ult)l = [u(t) = ult),f(r) - £(¢t)]
*2 We conclude that g(t) = lu(t) - u(t)l satisfies
g g'(t) < wglt) + [u(t) - ult), £(t) - £(¢))

and the integration of this elementary inequality yields the first inequality of

_.- (1.8). The final inequality of (1.8) comes from Proposition 1(iv).
- In particular, if the assumptions of Proposition 2 hold and f = f,
-f u(g) = G(O), then u = G and strong solutions of the initial-value problem are unique.
i‘ Even more, they depend continuously on initial data and the forcing term £ according to
7: the estimate (1.8). If f = ;, the estimate of (1.8) amounts to the same
:: quasicontractive estimate from which we motivated the condition "A + wI" is accretive,
e and the circle is complete.
i: However, it is an unpleasant but very interesting fact that we cannot think only

of strong solutions. Indeed, we will have to travel rather far from this notion to

a .
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accommodate the full range of phenomena in this subject. In particular, there is an
example of a quasicontractive semigroup 8 on X = C((0,1]) such that 8(t)x is not
differentiable for any 0 < t or x @ X and thers are natural accretive operators A
arising in partial differential equations for which the problem (DE)g with £ = 0 has no
strong solutions on (0,*), a phenomenon which corresponds to the development of
"ghocks®” ~ that is, discontinuities develop in the solution or its derivatives in such
a way as to render it subtle to well - pose the corresponding problem. We take up

another, broader, notion of "solution” in the next section.

Section 2. Mild Solutions:
fet us motivate the notion to be introduced the following way. The existence
question for the classical Cauchy problem

-—~all + =
dt(t) Au(t) £(t)
(CcP)

u(0) = x,
where A is a continuous function in scme R = X is often approached via the method of
*"Puler lines”. Now, this just amounts to solving (which is trivial matter when it is
possible - see below) the explicit difference approximation

u, (1) - nx((i-‘l)X)
A

+ mx((i-‘l)k) = £({1~1)2),
(2.1)

ux(O) - x,

for the nodal values u;(ii) of the approximation u,, interpolating them linearly, and
then studying the (subsequential) convergence of u, to & solution u. Of course, it
linear interpolation produces approximate solutions ay which converge uniformly to a
continuously differentiable solution, so will piecewise constant interpolation. Now
the scheme (2.1) is often not a good one if A is a partial differential operator, since
the formal solution of (2.1) is, in the case £ = 0,

U (4A) = (T = Wuyt(=1)A) = (2 = MHtuy(0) = (1 - mix

and one is applying high powers (I - )i of a aifferential operator to a fixed x, and

-9
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this is a bad idea in general. On the other hand, if we replace (2.1) by

ux(il) - ux((1-1)k)
A

(2.2)

+ Aux(ik) = f(11)

and £ = 0 we formally have

uy(42) = (2 + W) Tuy((1-1)n)

or

(2.3) uy(42) = 3,x
vwhere

(2.4) I =+ w7

Now, provided the inverses have an adequately large domain, this procedure is well
defined and proceeds Ly applying powers of the inverses, which have a better chance of
behaving well. The method (2.2) is called "implicit Euler”. One is naturally led to
consider the idea of accretive operators when approaching things from this point of
view, since the method (2.3) has a better chance of success if the operators in are
equicontinuous for i) bounded. About the only way to guarantee something like this is
to ask each factor J) to have a Lipschitz constant K,, and then in has Kxi as a
Lipschitz constant. If Ky = (1 - Au)", then Kxi + 6% ag i) + ¢t and i + = Moreover,
one is naturally led to place conditions on the domain of the resolvents J,. The best
thing is to have them defined everywhere (at least for small A).

Definition 3. Let A @ A(w). Then A + wI is m-accretive if R(I + M) = X for A > 0 and

Aw < 1.

The condition of m-accretivity is enjoyed by many important operators in
applications. The simplest example of an A such that A + wl is m~accretive is a
Lipschitz continuous function A on all of X which has w as a Lipschitz constant. Also
every continuous function A on X which is accretive is m-accretive (although this is
not 8o easy to prove). However, examples from differential equations will not be

continuous and will typically have small domains.

-10-
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2

. With this prologus, we will adopt below a notion of solution which refers directly

. to the approximation method used to prove the existence of solutions, the implicit
-~ Euler method. There is ample evidence that this is a reasonable thing to do. It
. provides a great unity to the spectrum of examples developed over the last decads or so
and we can speak of "mild solutions™ of very &ifferent problems. On the abstract side,
we £ind it a completely adequate notion for discussing (DE)s and the basic existence
theory and generation theory involving accretive operators which has been dsveloped.
It has shortcomings when one attempts to deal with generalizations of (DE)y, which we
call a "quasiautonomous equation®, to more general time dependencies; e.g.
u' + A(t)u = 0, as will be mentioned later.
{; We now define the notion. For a while, there will be no restrictions of
accretiveness imposed and the discussion is completely general in this respect. In
order to accomodate the natural generality f € L'(O,T:X) and other results discussed
later, we will need more general approximations than (2.3) - in particular, we will
want to refer to variable meshes rather that the constant step size )\ above.

Let £ @ L'(0,7:X) and € > 0. An e-discretization on [0,T] of u' + Au 3 £ on [0,7T]

consists of a partition {0 = ty € tq €ty € «os € ty} of the interval [0,ty] and a

finite sequence {f;, f5,...., tu} C X such that

(a) £, - ¢, _,<efori=1....,Nand T - & <

(2.5) and " .

() ) ]t - g8 < e

1=1 ¢,

- The inequalities (2.5) (a) require that the step sizes of the partition not exceed ¢
and the end point ty ¢ T not miss T by more than €. The inequality (b) requires that
the forcing term f be approximated within € in L‘(O,tN;x) by the piecewise constant
function whose value on (t1_1,e1] is fi' These data do not refer to the operator A

“o* occurring in the equation. We will indicate it by writing D, (O=tq,tq,eestyifq, e fy)

for the discretization.




e tm MmN G Ww Wm & . PSR At S St S St

A solution of a discretization “h‘“'to-‘1'°"tu=f1'-"fu) is a piecewise constant
function v:(0,ty] *+ X whose values v; on (ty_q,t;) satisfy

i T Vi
t

{2.6)
17 %

+ Av1 2 fi for i = 1,..44,Ns

The value v = v(0) is not otherwise restricted. An e-approximate solution of an

inclusion u' + Au D £ is a solution v of an e€-discretization D, (O=tg, ., tyifq,ee,fy)e
Definition 4. Let A be an operator in X, T > 0, and f € L‘(O,T:X)- Then a mild
solution of u’ + Au 3 £ on [0,T] is a u @ C[0,T:X] (the continuous functions from [0,T)
into X) with the property that for each € > 0 there is an ¢-approximate solution v of

u' + Au @ f on {0,T) such that fv(t) - u(t)l < € for t in the domain of v.

Less formally, mild solutions are the continuous uniform limits of approximate
solutions. We reiterate that while this notion is just broad enough to provide an
adequate extension of the class of strong solutions for our purposes, mild solutions
represent a very considerable generalization the strong notion.

Let us mention that while we have treated the endpoints 0 and T of the interval
{0,T] assymetrically in our definition of e-discretizations and e-approximate
solutions, this difference disappears at the level of mild solutions (although this
requires an argument). That is, the class of mild solutions is unchanged if one
requires only 0 < ty € € in the definition of an e-discretization and makes the obvious
subsequent modifications. We do not know if the class of mild solutions is left
unchanged in general if we require both t; = 0 and ty = T. Without further ado, if
ac<band f e L‘(a,bzx) then one defines strong solutions on [a,b], €-discretizations
of u' + Au @ f on (a,b] and mild solutions on [a,b] in the obvious way. If Q is an
arbitrary interval and f € L{OC(Q:X) a mild (strong) solution of u' + Au @ f on Q is a
u € C[Q:X] which is a mild (respectively, strong) solution on every compact subinterval
of Q (and this is consistent with the original definitions, as must be checked).

The next result collects a variety of properties of mild solutions of differential

equations.

-12-
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Proposition 3. (Properties of mild solutions.) Let A be an operator in X,

Q an interval in R, and £ € Lioc(gzx).

1)

If u is a strong solution of u' + Au @ £f on @, then u is a milad

solution of u' + Au 3 £ on Q.

(11) If u is a mild solution of u' + Au 2 £ on @, then u(Q) C D(A) (the closure

of D(A)).

(i14)

(iv)

(v)

(vi)

(vil)

Let Q@ = [0,T] and u be a mild solution of u' + Au ®¢ on (0,T]. If
D(A) is closed and A is single~valued and continuous, then
t t
u(t) = u(0) - johu(l)d- + Jof(l)dl for 0 < t €< T,

In particular, u is a strong solution and it is a classical solution if £
is continuous.

(Continuation property). Let Q = Q4UQ, whers Q; is a subinterval of

Q. If u@ C(Q:X) is a mild solution of u' + Au @ £ on each Q,, then ic
is a mild solution on Q.

(Closure property). Llet f, € Ll _(@:X), u, @ C(®:X), and u, be a nild
solution of up + Au, 3f, forn=1,2,..s . If £, converges to £ in L‘
and u, converges to u uniformly on compact subsets of Q as n + =, then
u is a mild solution of u' + Au 3 f on Q.

(Translation property). Let u be a mild solution of u' + Au 2 f on Q
and h € R, Then v(t) = u(t + h) is a mild solution of v' + Av D gon
Q - h vhere g(t) = £(t + h).

(Perturbation property). Let p be a continuous mapping of ﬁ) into

X. Then u is a mild solution of u' + Au + p(u) 2 £ on Q if and only if
u @ C(Q:X), u has its values in ;(_A), and u is a mild solution of

u + Au 2 g on Q, where g(t) = £{t) - plu(t)).

-13-
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As the reader can see, many of the usual properties we associate with the

solutions of ordinary differential equations remain true in the context of mild .
solutions, a comforting fact. One of the things we can do with the notion of a mild
solution is define a semigroup from an arbitrary operator A. Indeed, given an operator
A in X, put
Dy = {x €@ X: u' + Au 0, u(0) = x, has a unique mild solution on [0,-)}
and define Sp(t):Dy + X by
(2.7) 8,(t)x=u(t) where u is the mild solution of u'+Au D 0, u(0) = x.

Proposition 4. Let A be an operator in X. Then 8, is a semigroup on D,.

We will call 8, the “semigroup generated by - A".

Section 3. Convergence of Approximate Solutions
In this section we outline the main facts concerning the existence of mild
solutions of the initial-value problem

%% + Au D £(¢),

ave), o

u(0) = x,

where A + wl is accretive and £ € z.‘(o,'r:x). Congider a discretization

Dp(0=ty,tq, o tyify,ee,fy) Of u' + Au 3 £. The nodal values vy = v(ty) of a solution v

of this discretization satisfy

v, =V
t_i-:_t.u* Avi E] f:l. for 1 = 1,...,N
i i=1

(3.1)

or, equivalently,

- -1
(3.2) vy Jai(v1_1+61£1) for i=1,...,N, where 6:|.-1:!.-t’._1 and ax-(nm '

and we are assuming that JX is a function in the range of ) where we use it. If A + wl

is accretive, then this is the case in (3.2) provided that Glm < 1¢fri=1..,N If
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A + ul is also m-accretive, then the domain of J, is all of X for Aw < 1, and (3.2)

uniquely determines the v, for any choice of the discretization Dp(0=tg, e, tygifysec,fy)

of small mesh and intial-valus vy of v. Thus for a large and interesting class of

operators A, every discretisation of small mesh of u' + Au D f is uniquely solvable

once the intial-value of the solution is specified. This adds interest to the next

theorem. In the theorem, an t-approximate solution of (J:VP),"f on [0,T) means an €~

approximate solution of u' + Au 3 £ on (0,T] which further satisfies

(3.3w(0) - x1 ¢ c. Theoremi.(Convergence)LetA+ulbeaccretive,xethé¢

closure of D(A)), and £ @ L1(0,Ti1X). Por each ¢ > 0 let (IVP):J have an e~approximate

solution on [0,T]. Then the problem (IVP), , has a unique mild solution u. Moreover,

there is a function x{(¢) such that x{(0+) = 0 and if v is an c-approximate solution of

(IVP)x'f then

lu(t)=v(t)l € c(€) for 0 < ¢t €T ~ €.

The convergence theorem asserts that if e-approximats solutions exist for each ¢,

then they converge as € + 0 to a mild solution u and the difference between u and any

c-approximate solution is estimable in terms of €. The estimate x will depend om T, @,

the bshaviour of A near x (or simply Iyl for y € Ax if x 6 D(A)) and the modulus of

continuity of £ in L1 with respect to translations. In particular, if A + ul is

m~accretive, and £ @ L‘(O,T:X), then (IVP)x‘! has a unique mild solution for every

xem).

We will not give the details of the proof of the Convergence Theorem, but we will

outline a simple and interesting attack which gives much more information than claimed

so far.

First Step. Let v be a solution of a discretization DA(O"'O"V'"'u’fl""fn) and w

be a solution of a discretization °A(°"-o,"-1'--"u'91'--'9u) with nodal values v; and

vy respectively. Put

11'1 - Iv1 - vjl, Yi- li- li_’, 63' tj- tj-‘l'




-
».
4

b

b= s A
R l..’

.

v, ¢ $ Y Y, $
- i i i3 -
{3.4) (1 w;::si)li'j < ;:;%;‘1'1,j+ ;I:?;.llj-1+ Yi+sj|f1 gjl

for 1 € {1 <M, 1 € j < N. Moreover, for any x € D(A) and y @ Ax

‘1,0 < ai'1lv°-xl+lwo-xl+ k2.101."‘1']‘(lfkl‘o-lyl) for 0<iM,
(3.5) and 3
8,4 ¢ Bj’1lwo-xl+lvo-xl+ k£1sj'k6k(|gkl+|yl) for 0<j<N,
where
i -1 J -1
(3.6) % x -Ek(1-u1‘) and Bj,k -ufk(1-m6n) .

The inequalities (3.4) and (3.5) are elementary consequences of the assumptions.
The proof of the Convergence Theorem then reduces to estimating solutions of (3.4) and
{(3.5). One way to recognize the behaviour of solutions of these inequalities is
ocutlined next.
Second Step. Consider real-valued functions ¥(s,t), ¢(s,T) of two real variables s, T
which are related by the differential equation
(3.7)  ¥y(s,T)+P (8, T)-wp(s,T) = @O(s,T) for 0<s<T and0<T<T.
Let us introduce a grid
(3.8) 8= {(85,ty)s 0w Cuer.<a, €T 0 0o Gty <T]

and approximate (3.7) on this grid by the difference relations

Y .- v, - ¥
(3.9) i3 -39, i'Lc £:3°1 4y« @, . for im1,..,M, 3=1,..,N,
Yi 3 i,3 i,)

where Y; = 8; - 8;_4 and 63 - cj -tj_1. When (3.9) is solved for !1,3 (given the
values '1,3 for 1 = 0 or j = 0) we might hope |'1,j - w(li,Tj)I is small when it is
small on the "boundary"” i = 0 or j = 0, the mesh mnx{vi,sj} is small, and the values

°1,j approximate & on (51_1,l1]x(1j_1,Tj] in some good way. Now (3.9) becomes, upon

rearranging,

Y, $ 8 Y Y
(3.10) ”-01—-*1—61_)'1 5" —1 —4 L1,
AT

4 +
Yi + Gj i-1,3 Yi-b [

4 +
j 1:1'1 Y1+ 6j 1rj




and the relationship with (3.5) becomes apparent. The terms corresponding to 01'3 in
(3.4) are "1 - gjl where the f; and 94 are nodal vaiues of piecewise constant
approximations of functions £, g @ L'(O,T:x). It is not exactly clear how such .i,j
approximate this ¢, \but they do so in the sense required to apply the convergence
result described next.

let b @ C({~7,8]). The integration of (3.6) subject to the boundary condition

¥(s,t) = b(s-1) if 8 = 0 or vt = 0 leads to the following formulae for ¥ = G(b,¢):

! w(T-a)

T
= ¢""b(s-1) + ] e ¢{s-T+a, a)da for 0<T<a<T,

0
(3.11) G(b,9)

w(s=

s
= " bla-1) + | o * % g, T-s+a)da for 0<s<TCT.

0
In what follows ¢ is such that G(b,¢) is well defined and continuous.
We want to discuss a solution operator for the corresponding discrete problem and
begin by introducing the noxm in which approximation of ¢ will be required. To this

end, if R = [0,8]x[0,T] and ¢:[0,8)x[0,T] +» R put

=inf {I£}

o tJots, )] < |£(s)|+|g(1)] a.e. on B},

(3.12) 101 ; +gt

L (0,8) L (0,T)
where it is understood that the inf of the empty set is -=. Next, if A is the grid
(3.8), put

2(a) = (0,s,1x(0,t].

B:[-ty,sy] + R and :0(A) + R
be piecewise constant on A, i.e. there are constants Bi,j' °1,j such that B(0) = Bo'o
and
B(r) = Bi,j for i = 0 and “ty €r < -ty qor J=0and 84 <r<wsy,
and

¥s,7) = & 4 for (s,7) @ (ay_q,94)x(Ty_q,T4].

-17-
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If the mesh m(4) = max{yy, 8y} of 4 satisties m(4)w < 1, the equations (3.9) are
obvicusly uniquely solvable for !1', given that

(3.13) Y ,y"8y,yfori=Oorje=0.

Let ¥ = H,(B,¢) denote the piecewise constant function on 4 obtained by solving (3.9)
subject to (3.13).

Theorem 2. Let b @ C((-7,8]) and ¢:(0,T]x(0,T] + R. Then

1G(b,9)-H,(B,8)) =+ 0 as m(A)+Ib-B\ +lo-8 -+ 0.
A L aan S TR

There is a lot packed into this result, and we have formulated it in a sort of
sneaky way. In particular, no assumptions were made on & in the theorem. This was
possible, because the result asserts nothing unless we can approximate ¢ with piecewise
constant functions in the norms (3.12), and not every function can be so approximated.
In particular, not every bounded and measurable function on [0,8]x[0,T] can be so
approximated. However, functions of the form If(s) - g(T)! with integrable f and ¢
can.

lat us sketch the application of Theorem 2 to Theorem 1. Let
£, g@ L‘(o,'r:X), xqs ;‘0 e m). v be an c-approximate solution of
(3.14) u' + A 3DE, ul0) = x,, .
and w be an c-approximate solution of

u' + Au D g, ul0) = xg,
and the discretizations solved by v and w be the ones in the first step. The piecewise
constant function B on (-t“,.nl vwhose values Bi,j for 41 = 0 or J = 0 are the right hand

sides of (3.5) tends, as € + 0, uniformly to the function

. ~
bBls) = ¢ ixy=xt + | «®* W (ug(a)rietyt)an + 1xx 1 for ocscr,

0 0
(3.15)
-~ ‘
bl-1) = ¢ Fixy=xt + | & (agia)irtynaa + be-x,)  for 0<T<T.
0

To prove this one uses the fact that the functions whose nodal values are the f, and 9
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aiffer from £ and q in A by at most ¢ and elementary estimates. Moreover, if
®(s,t) = 1£(a)=g(t)} and ¢ is the piecewise constant function on A given by
.1,3 - Iti-gjl, then

(3.16) o - ..Q(A)‘ 2¢.

Finally, since the 8,4 satisfy the inequalities (3.5) and (3.6) they may de
estimated above by the solution '1,j = H(B, 0)1'3 of the corresponding equalities.
Recalling the meaning of the ay .4 and Theorem 2 we conclude that for any n > 0
(3.17) Iv(s) = w(t)l € G(b,¢P)(s,T) + n

as soon as £ is small enough.

- We use (3.17) in three situations. If £ = g, xq = ;‘0' and s = T = ¢, we compute
G(b,p)(t,t) = 2Ixo-xl and conclude that

fv(t) ~ w(t)l < 2Ix°- xh + n,

a8 soon as € is small. 8ince x5 @ D(A) and x @ D(A) is arbitrary, this verifies the

Cauchy criterion for the net of c-approximate solutions of (3.14). Let u be the limit

AR

of the ¢-spproximate solutions of (3.14) as ¢ + 0. Now we take the limit in (3.17)

with s = t + h, £ = g and xy = X, to conclude that

la(tsh) = ult)] < G(b, ) (tsh,t) = % (0" e 1)ixy- x1 +

(3.18)

h _ t -
. J . w(h Cllf(“)| + Iyl)dﬂ) + j .w(t a"f((ﬁ'h) - £(a)lda,
0 0

for every y € Ax and x @ D(A). It follows easily that u is continuous. In a similar

way, (3.15) in the general case implies that if u and u are mild solutions of problenms

u' 4+ Au3f and u' +A|;3§, then

wt

- - t -
(3.19) tae) - u(t)t < ¢ 1u(0) - uo)r + | e ig(q) - £(a)1da.

0
(The change in notation was made because we ran out of suitable letters.) The
inequality (3.19) reproduces the extreme inequalities of (1.8) for mild solutions.
Given the convergence, Theorem 2 also quickly implies the validity of the next

proposition.
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Proposition S. Let A + wl be accretive, £, fe L1(0,7:X) and u, u be mild solutions of
w' +AudDfandu' +Audf respectively. Then

w(t-s) w(t=T)

- - t - -
(3.20) fu(t)-u(e)l < e lu(s)-u(s)i+ [ e (u(t)=u(t),£(T)=2(T)]ar
s

for 0€<p<t<T.

The convergence theorem does not address the question of when approximats

W PSSP e 13T

solutions exist. Let us point out a couple of simple situations when this is not a
problem. Recall that if A + wI is m-accretive, then every discretization
Dp(0=ty,tq, v styify, s, fy) of small mash is uniquely solvable when an initial value is
specificd. We summarize the situation as regards the case in which A + «I is

maccretive.

o T TR L Nt T

Theorem 3. Let A + wl be m-accretive, x @ D(A) and £ @ L1(0,7:X). Then
u' + Au 3£, u(0) = x has a unique mild solution on (0,T). Moreover, if u and \; are,

respectively, mild solutions of u' + Au D £ and u' + Au D £ on [0,T}, then (3.20)

Fmdenir’s”

holds.
Another simple situation arises when considering the probles
(3.21) u' +Au 30, u(0) = x.
We know that the solution u, of the discretisation D,(0,A,2),+.,NA10,...,0) which
satisfies uy(0) = x (if it exists) is given by uy(il) = J,1x (see (%.3) ana (2.4)).
Thus if A € A(w) and
(3.22) R(X + AA) D D(A) for small A > O,
then (3.21) has a mild solution u for every x @ D(A). Moreover, u is given by

(3.23) inx + u(t) as A + 0 and 1) + t.

DR  RELLRLILFLA |

When A € A(w) satisfies (3.22), then its closure satisfies the stronger condition

" . —_—
) (3.24) R(I + M) D D(A) for small A > 0,
i —_—
:- and (3.21) is solvable for x € D(A) and (3.23) still holds. In particular, if the
.- range condition (3.24) holds, we have the exponential formula
I (3.25) Sp(t)x = lim (I + (t/n)A)™™x
ne+e
-— NS
for the semigroup generated by -A on D(A). :::_}'~.'.-_
Ny
:,s';:\'-';
RN
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Section 4. A Quasilinear Equation

In this section we sketch an application of the results of Section 3 to a (over
simplified) quasilinear problem related to those previously considered by Kato. This
section, while self-contained, is primarily intended for readers with some knowledge of
Kato's theory. It demonstrates a strong relationship between his existence results and
the results we have sketched so far.

Here X and Y denote reflexive Banach spaces with Y densely and continuously
imbedded in X. The norms of X and Y are denoted by
1 Ix and | 'Y respectively. The problem of interest has the form
(4.1) u' + B(u)u =0, u(0) = ¢,
in which B(u) is a linear operator in X for each suitable u. We detail properties of B
shortly, but first we must introduce a little notation.

In what follows linear operators are single-valued. If C:D(C) C X + X is a linear
operator, Cy, the part of C in ¥, is the restriction of C to {y @ D(C)MW: Cy e Y}. 1If
Z is a Banach space and C is a densely defined linear operator in Z such that C + wl is
m-accretive we write C @ N(w,Z). The Hille~Yosida theorm (which we will not use)
implies that C @ N(w,Z) exactly when -C is the infinitesimal generator of a continuous
' =ct wt

I_<e .

semigroup ¢t of linear operators which satisfies le 2

In the assumptions below r >0, g @ Y and

w=lyev: |y-v°|,l<r}

is the closed r-ball centered at w5 in Y. We assume that:

(B1) There is a 8§ @ R and for each v @ W an operator B(w) @ N(9,X) such

that D(B(w)) D Y and B(V)Y e N(9,Y).
(B2) There are L, Y > 0 such that for w, v eéwandy ey
IB(w) - B(w))ylx < Liw - lelyly and In(w)ylx < nyIY .

(B3) There is a u > 0 such that if w € W then B(w)wy @ Y and

|s(v)v° IY < u.

-21=
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In Fato's theory, (B1) is deducible from more subtle assumptions involving a
linear isomorphism 8:Y + X and conditions on B(w) and the commutatoxs 8B(w) - B(w)S.

Let us try to solve (4.1) via the discretization

x, =X
L1 4 oaix,_ 0%, =0, 4= Voo

(4.2)

uo_ = P,

Assume that T > 0 and (4.2) is solvable for each small ) > 0 for x; @ W for

1i=0,1..,8 where T < N). Mwe

uy(t) = x, for (1=1)A ¢t € i), i = 1,...,N
(4.3)
and u,(0) = 9.

We claim that then u;, converges strongly in X and weakly in ¥ unuoz;-ly on {0,7)
to function u:{0,T) + W which is Lipschits continuous into X and weakly continuous into
Y. Moreover, u is weakly continuously differentiable into X and satisfies u'(t) +
B(u(t))ul{t) = 0 for 0 < t ¢ T. 1In particular, it is a strong solution of u' + Af{u) = 0
where A(u) = B(u)u. We sketch the proof of these claims and then the proof that (4.3)
is solvable.

For each small A > 0, let (4.2) be satisfied, T < N), x; @€ W, and uy be given by

(4.3). Then, by (B2) and x; @ W,

(4.4) I, =% _ g™ XI!(::‘...')x‘.lx < xyh:‘.lY < Ay(r + Ivol,l).
Now put
(4.5) . Alx) = B(x)x for x @€ D(A) = W.

Clearly u, is a solution of the discretisation Br(0s A eee NAL€q 000, 6q) Of
u' + A P 0 vhere

(4.6) € = (Blxy) = (Blxj.q))x;.

Using (4.4) and (B2) again, we see that the “"errors" ¢; satisfy

2
lcil‘ < lei - "1—1'x'”1'y < Ay(r + "'o'y’ B
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and thus tend to zero in L™ and a fortiori in L', Finally we check that

A + wl is accretive in X where w = 6 ¢ L(r + lwolv). Indeed, by (B1) and (B2), if

x and x @ D(A) = W

lx-;+X(A(x)-A(;))Ix- lx—§+xa(x)(x-§)+x(s(x)-s(§));|x >

(4.7) >Ix-x+AB(x)(x-x)lx- Al(n(x)-s(x))xlx> (1-A6)Ix—xlx-ALIx-xlxlxly >

> (1 = X0 + L(xr + Iwoly))lx - xlx,

and the claim is proved. The convergence of u; in X uniformly in t to a continuocus

limit u now follows from the results described in Section 3. 8Since each u, takes

values in W, which is weakly closed in Y, and convergence in X boundedly in Y implies

weak convergence in Y by the aasumptions on X and Y, the convergence claims are

established. Clearly u(t) is weakly continuous into Y and B(u(t))u(t) is weakly

continuous into X. Moreover, it is easy to pass to the weak (in X) limit as A +0 and

JA + t in the relation

I
9, (3x) = ¢ + { B(u,(s = X))u,(s)ds,

which follows from summing (4.2) from i = 1 to j, to find

t
u(t) = ¢ + | B(u(s))u(s)ds,
0

which proves the claims about u being a weakly continuously differentiable strong

solution of (4.1).

It remains to discues the solvability of (4.2). By the assumption (B1), if X > 0

and A9 < 1, then given X4.q @ W and any £ in X we can uniquely solve

(4.8) x + xs(x1_1)x =g

for x = (I + Xn(x1_1))'1z and x € Y if 2 @ Y and

(4.9) 1+ amix,_ )", < 1= 207 for z =X or z - v,

Hence, 80 long as we keep X4.9 in W we can compute x; in Y. We estimate the range of i

for which this is possible. Without loss of generality assume 0 < 6. We will keep
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: A8 < 1/2 so that

(1 = 20)"1 ¢ o210:
By (4.9) and (B3), so long as xXj.q @ W,

: -1

-'.5 Ixi "o'y < (1 = 20) Ixi-vo*x(n(xi_")xi-n(xi_‘)voly -

. -1

(1=10) !x1_1- (v°+u(x1_‘)v°)l¥<

S

- -1

- < (1 - 20) (Ix‘_1 - "o'v + “’("1-1)"0'!) <

N -1
_ €01 =20 (hx,_ - wol + Au).

{-; Using the above inequalities and x; = ¢, one finds easily that

- 242

. lxi wol Y‘ e (g - '°|Y + 1),

& 80 we conclude that if

j TN g vyttt 1) <1,

: which will hold for A and T small encugh provided that ¢ lies in the interior of W,
o then (4.2) is solvable for x;, @ W when T € N\ < T + ), completing the discussion.

‘ Section 5. Generation Theorems and Xobayashi's Existence Criterion.

) In this section we introduce results of two kinds. On the one hand, if we are
M

L given a mapping from data (x,f) with the properties expected of the solution operator

of the problem

(IVP)x't u' + Au 3£, u{0) = x,

e
PLIPLIRN

when A + wl is accretive, we ask if that mapping indeed arises from an A in this way -

this is generation theory in the spirit of the first section. Secondly, we will

discuss more refined questions concerning the solvability of (IVP)x,o than have been

.

posed so far.

f .
P ettt

To begin, let us recall that if A + wl were m-accretive, £ €@ Ll ({0,=):X) and x @
oc

D(A), then (:vp)x'! would have a unique mild solution u @ C([0,*):X) which we will

denote by u = E,(x,f). Moreover, E, would snjoy certain properties which we now

-24-
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abstract. Let K be a closed and nonempty subset of X, L be a translation invariant
subapace of Lioc(to,-):x) and consider the following properties of a mapping
E:KxL + C([0,%):X):
(E1) Por x € K and f e L, E(x,£)(0) = x and B(x,f)(t) @ K for 0 < t.
(E2) E is translation invariant in the sense that
B(x,£)(t+T) = E(E(x,£)(T),£(.+T))(t) for x €K, f@L and 0 < t, T«
(B3) If x, x€K, £, £ @ L and u = E(x,£), G = E(x,f), then

w(t-1)

ta(e)-ute)l < e”‘lu(o)-u(o)|+j . [u(T)=u( 1), £(T)-£(T)) AT

for 0 € t.

Por example, if w = 0 and L = {0}, then (E1)-(E3) reduce to the requirement that
8(t)x = B(x,0)(t) defines a nonexpansive semigroup on K. Next we list soms results
which, under various circumstances, represent operators E satisfying (E1)-(E3) as
arising from solving an initial-value problem (IW)mt with A + ul accretive. 1In the

first result we see that if L is large enough, then the situation is rather nice.

(1) Let (E1)-(R3) hold and L contain all the constant functions. Then there is a
unique A such that A + wl is m-accretive and E is the rectriction of B, to Xx&.

Moreover, D(A) = K.

It is also easy to see that the mapping A + K, is one-~to-one on
{A: A + wI is m-accretive}
(essentially because y € Ax is equivalent to the constant function x being a solution
of u’' + Au 3y when A + wI is m-accretive). When L = L{oc([o,-):x) this provides us
with a biunique correspondence between mappings E with the properties (E1)-(E3) and
operators A with A + wl m-accretive; this is a perfect result. The situation in the
semigroup case, that is L = {D}, is considerably more complicated and there remain
interesting unsolved problems. We will restrict our attention to the case w = 0, but

all the results below remain valid in the general. We begin with the compact case.

(11) 1If S is a nonexpansive semigroup on a closed convex set K in X and K is locally

compact, then there is an accretive operator A in X with D(A) = K,
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e X ={R(X + M)s A > 0}

and § = 8, (equivalently, 8 is obtained from A via the exponential formula). In
particular, if X = ®¥ is finite dimensional, then every nonexpansive semigroup on a

closed convex set arises in this way. However, even if X = ‘2 with the maximum norm,

there are distinct m-accretive operators A and B with domains all of X for which
- S = 8p-

The next results do not require compactness but restrict the gecmetry of X
instead. In the event that X = H is a Hilbert space, the notion of an accretive
operator coincides with another notion, that of a monotone operator. Moreover, it is
known that an operator is m—accretive if and only if it is accretive and not a proper
restriction of another accretive operator - i.e., if it is maximal accretive

(equivalently, maximal monotone). This is the origin of the "m~" in m—accretive.

::: (i11) If X = H is a Hilbert space, K is a closed and convex subset of X and 8 is a
nonexpansive semigroup on X, then there is a unique m—accretive operator A in X such
that 8 = 8, and D(A) = K. Moreover, this correspondence is biunique, the infinitesimal

generator of 8, is -A® vhers A® is the minimal section of A. That is, for x € D(A), Ax

is a closed convex sst and A°x is the projection of 0 on this set (its element of least

e %
88 o’

Y.
.,

NOYM) «

IR
o e
P

The results above provide a perfect generation theorem for nonexpansive semigroups
in Hilbert spaces which is really quite rich in structure. Moreover, it is nontrivial

even in the case X = RI A generalization of (iii) holds which places less severe

geometrical restrictions on X, but more on K.

(iv) If the norm of X is uniformly Gateaux differentiable and the norm of x* is Frechet
z, differentiable, then the relation 8 = 8, establishes a biunique correspondence between

A nonexpansive semigroups on closed convex nonexpansive retracts of X and m-accretive

operators.

2 ~26-




We will defer further remarks in this vein to the comments section. For now we

content ourself with the final remark that it is still an unsolved problem to determins
whether or not an arbitrary nonexpansive semigroup S8 on a convex K can be represented
in the form S = §, for an accretive A. It sesms likely that if this is to be proved
not true, then this will be done by presenting a nonexpansive semigroup 8 on a closed
convex set X such that 18(t)x-xl/t + » ag t + 0+ for every x € K. If this is to be
proved true, it will likely involve some totally new arguments - a statement which
leads us to a few comments on the arguments used to prove (i) - (iv).

In order to prove (i), one proceeds according to the following idea: Assuming
that E is indeed of the form E,, we fix z @ X and try to build the solutions of
u' +Au + (w+ Nudg, u(0) = x from E. If A + ul is accretive, the time t mapping x
+ u(t) so defined is a strict contraction and byA a fixed point argument we conclude
that the problem has a constant solution u 3 x. Then x 6 D(A) and £ - (0w + 1)x @ Ax.
This leads to the following construction of A. PFirst extend E to K)P where P is the
space of piecewise constant functions. This is easy owing to (E2). E.g., if £ = z on
0D<Ct<aand f=wonac<t, put E(x,f)(t) = E(x,z)(t) for 0 < t < a and E(x,£f)(t + a)
= E(x,E(x,2)(a))(t) 1f 0 < t. Next use (E3) and the density of P in L] (0, ®:X) to
extend E to all of KxL] _(0,#:X). Next fix z @ X and x @ K and solve
u=2(x,~(v + 1)u + z) by iterating: ug £ x, and w, = B(x,~(w + ”“n-1)' Observe that
x + etu(t) is nonexpansive and so there is a unique element of K fixed by the map
x + u(t) for all t. That is, x = E(x,-(w + 1)x + z) has a solution. Defining A by
z - (0 + 1)x @ Ax yields an operator A with the desired properties.

In order to prove the results (ii) - (iv) a quite different path is taken. One
attempts to produce A by defining
(5.1) x+ )" = lm (14 W BlELT,

t40
and the main work is to show the existence of a suitable (perhaps subsequential)

"1limit. See the comments section.




£ AT
PRI R R e

il

* 5,0

AR NN
DR R
LS M S

T N -.'..‘

A ~f‘ Ay |'._-" <,

Ve

i'u' %%

The result (i) is a strong indication that if A + uI is accretive and the problem
(xvr)x,, has a mild solution on (0,®) for every x € D_(:) and constant function £, then
A is probably m—accretive. However, it does not quite say this, and there is an
apparently open problem here. A variant of the question involved here is the problem
of trying to give sufficient conditions and neccessary conditions for the solvability
of (IVP)x'o for arbitrary x @ ;-(T).

For example, the following is an interesting sufficient condition: Let A + ul be

accretive and

(5.2) lim ing SEE 2 WX L g gor x @ D(A),
A¥0
where 4(C,x) denotes the distance from the set C to x. Then the problem
(5.3) u' + Au 350, u(0) = x
has a mild solution on [0,%) for every x € ;(T). We call the condition 15.2)
"Kobayashi's criterion®. This is obviocusly a generalization of the range condition.
It is also a sort of tangency condition: 1In the event that A is a continuous function
on D—(;) it can be shown to be equivalent to the assumption that
(5.4) liz‘:n!—(——'—‘—ud x o Mx B . ¢ tor x e B(AT.
If the limit inferior is replaced by the limit above, the statement just says that
departing from x in the direction of -Ax will leave -D(—A) at gero velocity.
In fact, necessary and sufficient conditions are known for the solvability of

(5.3). Por example, the following are equivalent if A + wI is accretive:

(a) (5.3) has a mild solution on (0,») for every x € m).

(b) For every € > 0 and xg € DTA) there is a 8§ @ (0,¢), an integer N, and

yi e Axi, hi >0 for 1 = 1,...,N such that

N N
dh=§, ) Ix-x . +hyl<es
A R R S TS I 0t

=28~



That (a) + (b) is trivial. The other implication requires interesting arguments which
we will not sketch here. Do notice that Kobayashi's criterion is just the case (b) in

the particular situation N = 1,

Section 6. Regularity of Mild Solutions

In the generality we have been discussing, if A @ A(w) the only strong solutions
of the problems u' + Au 3 £ which are known to exist are the trivial ones, the
constants. That is u = x and f = y for all t where y € Ax. However, mild solutions
are a satisfactory extension of the notion of strong solutions, since mild solutions
are unique and strong solutions are mild. Wea have not addressed the other part of this
consistency question, namely if a mild solution turns out to be "smooth”, is it a
strong solution? Similarly, we have not given conditions under which mild solutions
are smooth. This we will do now. We 4o emphasize, before this, that even in
applications one does not want to be limited to strong solutions, since there are
important partial differential equations which simply 4o not have strong solutions.

A basic fact is the following consistency between the property A € A(w) and

differentiablity of mild solutions of u' + Au 2 £,

Theorem 4. let A @ A(w), £ @ L1(0,T:X) and u be a mild solution of

u' + Au 3£ on (0,T)s let u have a right derivative up(t) at v @ (0,T) and

1 t+h
lim — If(t) - £(t}lat = O,

h0 h t
that is, T is a right lebesque point of £f. Then the operator i given by
Ax = Ax for x # u(t)
and

Au(1) = Au(nU{£(T) - uy(n }

satisfies A @ A(w).
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If A + oI {s m-accretive and A @ A{w) is an extension of A (as is the case for the
A given by (6.1)), then A =A. This maximality property arises because if A were
strictly bigger than A, then for A > 0 and Aw < 1, (I + M)~' would be a function
strictly extending the everywhere defined (I + M), and this is impossible. It thus
follows at once that if A + wl is m-accretive and u @ H"‘(O,T:x) is a mild solution of
u' + Au D £, then u is a strong solution. When is a mild solution in wls1(0,7:X)? The
principal conditions guaranteeing this are given by:
Proposition 6. Let A € A(w), £:(0,T] + X be of bounded variation and x @ D(A). If u
is a mild solution of u' + Au 3 £ on {0,T], then u is Lipschitz continuous. Moreover,

T
!olTie000) - g1 4 vig, 1) + J]) ol T Ty(e, nyar,
0

vhere

. t-h
- V(t,t) = lim sup j £(r ¢ h‘)‘ = £(ul ar

h#0 0
is the variation of f over ([0,t], is a Lipschitz constant for u. If X is also

reflexive, then u @ w? 1(0,7:x).

That is, we have a regularity of u under the stated conditions which is
independent of X, namely Lipschitz continuity. However, it is only under further
conditions on X (e.g., reflexivity) that this guarantees differentiablity and hence u @
w‘"(o,r:x). In particular we have:

Corollary 1. Lat A + wl be m~accretive, £:(0,T] + X be of bounded variation,
x @ D(A) and X be reflexive. Then the mild solution of u' + Au 3 f,

u(0) = x is a Lipschitz continuous strong solution.

Onder further restrictions on X more refined statemtents about regularity can be
made, but they do not offer essential improvements over the information above and we
omit them here. Likewise, conditions like Kobayashi's criterion can be used to raplace

m~accretivity of A + wl in the case £ = 0 to deduce results like Corollary 1.

=30~
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A question related to the regularity considerations above is the following: 8ince
the only known strong solutions are the constants in general, are they enough to
determine (somshow) the class of all mild solutions? Another motivation for this
question is the observation that the definition of a mild solution is not very
*checkable”. That is, given a function u, how can we tell if it is a mild solution of
u' + Au 3 £?7 In general, we cannot simply compute u' and see if the relation is
satisfied. Since y @ Ax implies u = x solves u’' + Au 2y, we know by Theorem 3 that
any mild solution of u' + Au 3 £ satisfies
(6.2)lu(t) - xI < ou(t-')Iu(l)-xl*]tou("-ﬂ(u(t)-x,!(t)-y]dt for O<scter.

s
for y @ Ax. In fact, this family of inequalities can be taken to define a classn of
solutions called integral solutions. However, as opposed to mild solutions, the notion
depends on the norm of X via the bracket and is appropriate only if A @ A(w).
Moreover, it is not a good notion in general in the sense that it is easier to bs an
integral solution for a restriction of A than for A itself. However, it is a
uniqueness criterion provided mild solutions are known to exist (which guarantees that
A is "big enough” for the notion to be satisfactory). More precisely:
Theorem S. Lat A @ A{w), £ 6 L'(0,T:X) l.lld v be a mild solution of v' + Av 3 £ on

[0,T). If u @ C[0,T:X] satisfies (6.2) for every y @ Ax and u(0) = v(0), then v = u.

Hence if the existence of a mild solution is known, then one can determine if a
given function is this mild solution or not according as to whether or not the

relations (6.2) hold.

Section 7. Auxiliary Results: Continuity, Trotter Products and Compactness

In this section we formulate a variety of auxiliary results in the subject which
give additional useful information. PFirst among these addresses the problem of the
dependence of the solution of
(IVP)y ¢ u' +AuDf, u(0) = x,

on A. In order to formulate the results in a multivalued generality we recall the
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notion of the limit inferior of a sequence A, of operators. The operator lim inf A, is
defined by y @ lim inf A x if and only if there is a sequence y, € A,x, such that

x, * x and y, + y. We will meet the condition A C lim inf A, below, and it will make

n
things a bit clearer if we recall the following equivalent condition in the m—accretive
case.

Proposition 7. Let A, + wI be m-accretive for n = 1,2,...,® (with » explicitly

included). Then A, C lim inf A, if and only if

1

(7.1) a2+ M) = 14wk for x @ X

noe

for A > 0 and Aw < 1. Moreover, (7.1) holds for all such A if it holds for one such

A.
We call the condition (7.1) "resolvent convergence". Now let us formulate the
continuous dependence theorem in some generality.
Theorem 6. Let A, € Aw), £, @ L1(0,TSX) forn=1,2,..,* Let u, be a mild solution
of u) + Aju, ¢, on [0,T] for n = 1,2,...,% Let A, C lim inf A, and
T
Um [ M (€) = £ (E)Mat + fu (0) - u (0)F = 0.

n+* 0

Then u, * u, uniformly on [o,T}.

This result, in the m-accretive case, says that if intitial data converge, the
forcing terms converge in L‘(O,T:X), and the resolvents of the A, converge, then the
solutions converge. More generally, it makes the same claim provided only that the
solutions exist. The method of proof involves observing that, by definition,

Ae C lim inf A, implies that given any neighborhood of an aproximate solution of ug +
ALl D f, then for n large enough we can find an approximate solution of up + Aju, 2
in this neighborhood and then using the estimates in the proof of the convergence
theorem. The utility of such a result is clear. For example, one may use it to prove
the approximation result described next. If A + AL is m-accretive we may define the

Yosida approximation A, of A for small n > 0 by An = ﬂ-‘(I - (I + nh)"). Clearly A,
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is Lipschitz continuous with 2n'1 as a Lipschitz constant and it is easy to see that

A, + w/(1 - nw)T is accretive. Bince, as the reader could check, (I + Mn)" * (I +

M)~ as n + 0, the continuous dependence theorea implies that the solution u, of

u," +Aqy, = £, u“(O) = x converges uniformly to the solution u of the corresponding

problem with A replacing ‘n as n + 0. 8ince An is Lipschitz continuous, this is a

natural way to approximate u by regular functions in a fashion closely related to the

original problem.

Another sort of result of wide applicability can be motivated as follows: Suppose

we want to solve

(7.2) . u' + A + Bu = 0, u(0) = x,

and that we know the solutions of the Cauchy problems for the separate equations

(7.3) u' + M= 0, v ¢+ By = °'

intho!onotthol-tqmpslms,lututlm.mfuneum. Assuming a

large (and totally unreasonable) amount of regularity one computes

a
dell(t)l‘(t)xlt.o = Ax + Bx.

That is, infinitesimally P(t) = B,(t)8y(t) looks like 8,.,(t) should look. lloroov'or,

F(t)x is well behaved as a function of x. Can we not then represent 8,.,, in terms of

P(t)? One has the following theorem to this effect:

Theozrem 7. Let A @ A(w) satisfy the range condition (3.24) and C = D_(;) bs oconvex.

For each t > 0 let F(t):C + C and F satisfy:

(1) IP(t)x - P(t)yl < o't

Ix -yl forx, yéCand 0 <t < 1.

(11) 1im (2 + AP()) Tx = (2 + Aa)"'x for x € C and 1 > 0, Amax(w,L) < 1.
40

Then for each x € C, 8,(t)x = lin P(t/n)™x uniformly on compact t-sets.
n

It is part of the proof that the inverses used in (ii) exist. This result applies

in the "A + B" case above provided that one can verify the resolvent condition (ii)

given A and B. In this event, the conclusion is called a "Trotter product” formula.

However, there are many other circumstances under which one can verify the hypotheses
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of the theorem. The proof consists of using the estimates of the convergence theorem
together with another interesting app:ox_inuon result, which we state for interest's
sake in a special case.

Proposition 8. Let C C X be closed, F:C + C be nonexpansive and h > 0. If the
initial-value problem

w +h W (I -rPu=0,u0)=xec

RPN

has a mild solution on (0,T), then

A
'k - u(e)t € 20x - 2t ¢+ (0= £9% ¢ ) JR 1z - pes
' holds for every s € C, 0 < n and 0 < t{ T. In particular, choosing x = 2 and t = nh we
have

1 - u(nh)? < /nix - Fxl.

The last sort of auxiliary result we digcuss here concerns compactness. We fix an
ay
L operator A with A + ul maccretive and consider the initial-value problem
t,:.' (IVP)x £ u' + A 9 f. u(O) = X,
’
- whose mild solution u we denote by E(x,f). If £ = 0, then u(t) = B(x,0)(t) = 8,(t)x

where 8, is the semigroup generated by -A, and we will use this notation below. We ask

vhen the images of various sets under R are compact in various senses. The simplest

e

question concerns the semigroup case. A function in X is called compact if it naps
bounded subsets of its domain into precompact sets in X and a semigroup 8 is compact if
each 8(t) is compact for t > 0.

Theorem 8. Let A + ol be m-accretive and § the semigroup on D(A) generated by =A.

SO BRI

Then 8(t) is compact if and only if the following two conditions are satisfied:

(1) Por each small )\ > 0 the operator J) is compact.

wie

A (11) For each bounded subset B of D(A) and & > 0

2

: lim 8(t)x = 8(s)x holds uniformly for x @ B.

-F-,. tss

::- In applications to partial differential equations, compactness of S(t) tends to

= arise from regularigzing properties, that is S(t)x will lie in a more regular class of
::: functions for t > 0 than at t = 0. Another sort of compactness one is interested in is
.
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the compactness of the trajectory

tr(x) = {E(x,£){t)s 0 < t}
of the solution of (Iv”x.f‘ Compactness of trajectories is useful in making dynamical
systems type arguments concerning the asymptotic behaviour of u. Concerning this
property one has:
Theorem 9. Let A be m-accretive, 0 @ R(A), £ € 11([0,%):X) and x € m). In addition,

let (I + M)~1 be compact for some A > 0. Then tr(x) is precompact.

The first conditions in the Theorem guarantee that tr(x) is bounded and the compactness

comes from the assumption on J,.

Next we look at the solution operator for (IVP) and consider when it is compact as
a function of £ for fixed x € -IZ\(—A). There arises the question of what topologies to
use in the domain and range space here, and the next result contains an answer.
Theorem 10. Let A + wI be m-accretive and S(t) be the semigroup generated by =-A. Fix
x @ D(A) and p > 1. Let QiLP(0,T:X) + C[0,TiX] be given by

Q(f) = B(x,£). If S(t) is a compact semigroup, then Q is a compact operator.

This result is unsatisfactory in that it does not allow the natural generality of
f e L‘(O,T:x). It is possible to treat this case if we are willing to weaken our
requirements in the range space. Moreover, we can then vary x as well.
Theorem 11. Under the assumptions of Theorem 10, if 8(t) is a compact semigroup then
the solution operator E is compact as a mapping
E:pA)a! (0,T1X) » LP(0,T1X)

for 1 < p < o,

Section 8. Comments and References

In this section we amplify on the main text a bit and provide some basic
references for the interested reader. No attempt has been made to be complete, and
nothing like completeness has been achieved. However, the references we do quote

together with the references they contain should suffice to accurately represent the

=35~
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N situation. Let us begin by noting that there are several books in the general area.
The theory in Hilbert spaces is well developed in Brezis (17]. The general case is

treated in Da Prato [36), Barbu [5) and Pavel {72], [73]. The books of Martin ([64] and

e wwow

Browdexr (24) also treat aspects of the theory. The references provided by thess works
are not subsumed here and the reader will find many applications to partial
differential equations in Barbu's book.
:: On Section 1. Early attempts to represent nonexpansive semigroups were made by
Neuberger [69), Oharu [70] and Komura ([59), (60]. Komura's dramatic ideas were a main
I stimulus for the rapid development which followed (e.g., Xato [49], ([50], Crandall and
Pasy (34], Dorroh (41] and Browder (23]).

The bracket [ , ] and the duality map J are well known in functional analysis.

However, nomenclature and notation are inconsistent. For example, in Reich ([87] of

this volume, J(x) denotes what would be written IxW(x) in our notation. Sato [88]
provides specific computations of the duality map, but the reader can work out what J
and [ , ] are for the common spaces. Workers in this subject learned Proposition 1
(ix) in Xato (49]. If J is not single-valued, a stronger condition than Definition 1
I (i11) arises when the conclusion is required to hold for all x'e J(x - ;). An operator
with this property is sometimes called s-accretive (or "Browder accretive®, since this
notion was taken to define accretive in Browder [23]). If J is single-valued on X/{0}

the notions coincide. Interest in s-accretivity arises from facts like A + B is

. v h. T
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accretive whenever A and B are and at least one of them ia s-accretive.

Komura [59] is sometimes cited in this subject for a proof of the fact that if X

is reflexive and £:(0,T) » X is Lipschitz continuous, then £ € w"'(o,'r:x), but
]
! theorems of Radon - Nikodym type for reflexive spaces were already proved by
;- Phillips (77]) and Dunford and Pettis [42]. Reflexive spaces are but examples of spaces
: with the Radon - Nikodym property.
" On_Section 2.
! The notion of a mild solution is already suggested in Crandall and Liggett [32],
* although it was too early at that time to institutionalize the idea. The term "mild"
C4
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appears in Browder (21] in another context, but in a way consistent with our usage.
The notation and presentation hers are taken from [13], but variants of this natural
idea appeared in various places (under various nases), e.g. Kenmochi and Charu [52],
Kobayashi (53], and Pierre (78). There are many questions one can ask about mild
solutions which have not been sericusly approached. Por example, it is known that a
mild solution in the current sense cannoct necessarily be approximated by solutions of
discretizations with uniform steps - but it is not known if thia is trus when, 0:gey A
is acoretive. It is known that if £ = 0 and X = R and A is acoretive, then uniform
steps are enough. (Unpublighed results of Crandall and Pierre). In most applications
these issuss are not serious, as A is either meaccretive or satisfies a variant of the
range condition (3.22). R. Martin [63] proved that continuous accretive operators are
® - accretive.

It is also known that mild solutions defined, as we have done, in the implicit way
(2,6) (i.e., A is svaluated at vy) differ from those defined in the explicit way in
which Avy is replaced by Avi_q in (2.6). 1Indeed, it is easy to see that u(t) is the
limit of solutions of explicit approximations of u' + Au ® 0 1ff w(t) = u(-t) is a mild
solution of v' + Av 3 0. The case of a single conservation law, a partial differential
equation vhose relevant solutions are not reversible and vhich can be accomodated in
the theory ((29]) provides a significant counterexample. Proposition 3 is selected
from (13},

The notion of a “"strong solution” is standard, but sometimes people prefer to
weaken it to require the continuity of the solution on ([0,T] and what we have called a
strong solution on {¢,T] for each ¢ > 0. This accomodates more exanples and still

allows one to do “"caloulus” without undue worry sbout the validity of the

manipulations.

Examples of badly behaved nonlinear semigroups occur in ([32], Plant [82] and Webb

[92,93), but mild solutions which are not strong solutions are familiar even in the
linear theory when initial data 4o not lie in D(A) or £ is not sufficiently regular (in

which case the variation of parameters formula typically provides such suliutions).
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Oon_Section 3.

The first proof that solutions of difference approximations converge (in a more
_'.'- restricted context, but with general X) was in ([32]). Rasmussen ([83] provided a useful
- ) proof. Takahashi [89] gave a more general convergence proof with variable steps.
Benilan [7] proved the existence and uniqueness of mild solutions for
- u' + Au 3 £ vhen A is maccretive. The existence also follows from results of Crandall
and Pazy (35].

The full Theorem 1 was first proved in Crandall and Evans [31] by the fun mathod
“ , sketched here. One finds appropriate error estimates in [(31] as well. The result in
l the case £ = 0 was cbtained by Y. Kobayashi [53] who formulated his results for quasi-

accretive operators, a notion which generalizes the accretive case and which was

: introduced by Takahashi (89], but for which significant nonaccretive examples are
! lacking. Kobayashi's method was different (and simpler) in the case £ = 0, but it

becomes more complex in the general case. See also Takahashi [89], [90]. The reader

- may consult K. Kobayasi [56] and K. Kobayasi, Y. Kobayashi, and 8. Oharu [57] for even
' more general results by this method.

Indeed, there are a variety of generalizations of the above to time dependent
~. equations of the form u’ + A(t)u 5 £, although it is not easy to be satisfied with any
- particular set of technicalitites or definitions in this case (as is already true in

) the linear setting). We mention that Kato (50} and Crandall and Liggett [32] already

i allowed some time dependence, while Crandall and Pazy [35] is more genexal. The case
of "integrable" time dependence was handled in Evans [43) using the results of [31] (in
essence, Theorem 2), and there is also the elegant and different approach of Pierre

[79]. The recent works [57], which was mentioned above, Iwayami, Oharu and Takahashi

." {47}, and K. Kobayasi and §. Oharu (58] extend the theory in various significant
-S ways. It would be interesting to know the precise relationship between the convergence

assertions in these works and Theorem 2.
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On _Section 4.

The theory of Kato referred to is the simplest context described in his survey
[S51) in this volume, and we refer the reader to this paper for appropriate
references. The relationship with the nonlinear theory sketched here is noted in
Crandall and Souganidis [37], and can be greatly generalized. See alsoc Hazan [48) in
this regard. If the assumptions of this Section are strenghtened by requiring the
existence of an operator S:Y + X with the properties described in (51]), then the
conclusions of this Section can be strengthened to assert that the difference
approximations converge in the strong topology of Y uniformly in t and the proof can be
adapted to prove the continuity of the solution as a Y~valued function (and the
assumption (B3) dropped). This is done in Crandall and Souganidis [38). Another work,

which is in a more preliminary stage, extends these results to the variable norm

setting explained in Rato's article in this volume.
On Section 5.

The result (i) is due to Benilan {7). The result (ii) follows from Crandall and
Liggett ([32]. The biunique correspondence of (iii) was proved by Crandall and Pazy
[34]. The existence of an m-accretive A such that 8 = §; in Hilbert spaces in this
generality involves Minty's theorem, which essentially states the equivalence of
"maximal monotone™ and "m-accretive”™ in Hilbert spaces, and this result fails in
general. (See Crandall and Liggett (33] and Calvert (27].)

The idea to obtain A via (5.11) is XKomura's ({60]), and so is the first proof of
the existence of this limit in Hilbert spaces. This result was the hardest step in the
proof of (iji). New ideas had to be introduced to extend this convergence result
outside of Hilbert spaces, and this was done by Baillon [3]. Reich sharpened this line
of the theory, and (iv) can be found in [84). We refer to Reich [85,86] for further

references and discussion. See also (87), Theorem 1.6. By the way, the results of
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[33] to the effect that the limit (5.11) always exist if X is two dimensional but may
fail to exist if X is three dimensional show that the success of this approach must
involve geometrical considerations.

The sufficiency of Xobayashi's criterion (5.2) for the solvability of (5.3) was a
fascinating result of {53]. This result allowed very slick proofs of m~acccretivity if
operators of the form A + B where A is maccretive and B is continuous and accretive,
generalizing results of Martin [63), Webb [93], and Barbu (6]. The equivalence of
(5.2) and (5.4) is remarked in [30). Numerous people, including Kaplan and Yorke [48]
and Takahashi (89], contributed to the development of this line of thought . The
sufficiency of (b) is an ﬁnpublilhed result of Y. Kobayashi. He also shows (b) is
equivalent to another condition related to the sufficient conditions of Pierre [80].
One also finds examples indicating the distinction between various conditions in (80].
Section 6.

The results on regularity of mild solutions we will regard as being "from the
community”, but let us mention that the main facts were not so obvious in the
beginning. It was mentioned in Section 2 that a strong solution is a mild solution -
this is not entirely obvious. Theorem 4 is the heart of results in the other direction
- it implies that differentiable mild solutions satisfy the equation pointwise if A is
"big enough” in the sense that the operator of (6.1) cannot properly extend A (and so
mild solutions are strong if they are regular encugh). Theorem 5 is a simple version
of Benilan's uniqueness theorem ([7]).

Section 7.

Theorem 6, in this general formulation, may not appear in the literature. (We are
using a formulation from [13]). See, however, Miyadera and Kobayashi [66), and results
in this spirit in general Banach spaces go back to Benilan (7], Brezis and Pazy [20]),
Kurtz (62) and Goldstein ([45]. For examples of substantial applications of this result

in pde see, e.g., Benilan and Crandall [10] or Kenmochi and Oharu (52].
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Theorem 7, the conclusion of which is called the nonlinear Chernoff formula, is
due to Brezis ahd Pazy [20]. An earlier version and Proposition 8 are due to Miyadera
and Oraiu [68] . Theorem 7 has many applications in pde - see, e.g., Berger, Brezis and
Rogers (16], Coron (28], Kenmochi and Oharu [52), and Charu and Kobayasi (58). There
has been a fair amount of recent activity concerning results of this general type in
special circumstances, See, e.g., Benilan and Ismail [15), Reich [85,86], Kobayashi
[54], [55] and their references. M. Pierre [81] has recently obtained quite
interesting results (both positive and negative) on the validity of more general
formulae invelving nonuniform steps.

One can ask to what extent the implications in Theorems 6 and 7 are reversible and
be led thereby to the guestion of convergence versus resolvent consistency. Since the
conclusion of Theorem 7 always holds if F(t) = s(t), this links up with the problem of
the existence of the limit (5.1). See Reich [86] for recent results and references.

The various compactness results are proved in Brezis [18], Dafermos and Slemrod
[39] and Baras [4). See Konishi [61]) for an early result of this type and Brezis and
Friedman [19] for an application in pde.

Asymptotic Behaviour,

We have ommitted the topic of asymptotic behaviour. The works of Bruck [25]) and
Baillon (2] stimulated a large amount of subsequent work on these lines of research,
and the area remains quite active. The survey article Bruck (26] is a recent source on
this topic and we refer the reader to it. Other recent sources on aspects of this
question include Pazy {74], [75], [76], Reich ([87], Miyadera (65], and - in a somewhat
different vein - Alikakos and Rostamian [1].

Reqularizing Effects. A final topic we mention is that of regularizing effects. These
concern questions of regularity - interpreted in various ways - of 8(t)x for t > 0 that
» itself may not enjoy. There is no general theory available yet, but the phenomenon
is widespread and of considerable interest when it is present. On the abstract side,
the best known examples are the regularizing effects of linear analytic semigroups and

semigroups generated by subdifferentials of convex functions in Hilbert spaces (see
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